A molecular model for intercellular synchronization in the mammalian circadian clock.
نویسندگان
چکیده
The mechanisms and consequences of synchrony among heterogeneous oscillators are poorly understood in biological systems. We present a multicellular, molecular model of the mammalian circadian clock that incorporates recent data implicating the neurotransmitter vasoactive intestinal polypeptide (VIP) as the key synchronizing agent. The model postulates that synchrony arises among circadian neurons because they release VIP rhythmically on a daily basis and in response to ambient light. Two basic cell types, intrinsically rhythmic pacemakers and damped oscillators, are assumed to arise from a distribution of Period gene transcription rates. Postsynaptic neurons show time-of-day dependent responses to VIP binding through a signaling cascade that activates Period mRNA transcription. The heterogeneous cell ensemble model self-synchronizes, entrains to ambient light-dark cycles, and desynchronizes in constant bright light or upon removal of VIP signaling. The degree of synchronicity observed depends on cell-specific features (e.g., mean and variability of parameters within the rhythm-generating loop), in addition to the more commonly studied effect of intercellular coupling strength. These simulations closely replicate experimental data and predict that heterogeneous oscillations (e.g., sustained, damped, and arrhythmic) arise from small differences in the molecular parameters between cells, that damped oscillators participate in entrainment and synchrony of the ensemble of cells, and that constant light desynchronizes oscillators by maximizing VIP release.
منابع مشابه
Quantitative Analysis of Phase Wave of Gene Expression in the Mammalian Central Circadian Clock Network
BACKGROUND The suprachiasmatic nucleus (SCN), the master circadian clock, is a heterogeneous oscillator network, yet displays a robust synchronization dynamics. Recent single-cell bioluminescent imaging revealed temporal gradients in circadian clock gene expression in the SCN ex vivo. However, due to technical difficulty in biological approaches to elucidate the entire network structure of the ...
متن کاملDevelopment and validation of computational models for mammalian circadian oscillators.
Circadian rhythms are endogenous rhythms with a cycle length of approximately 24 h. Rhythmic production of specific proteins within pacemaker structures is the basis for these physiological and behavioral rhythms. Prior work on mathematical modeling of molecular circadian oscillators has focused on the fruit fly, Drosophila melanogaster. Recently, great advances have been made in our understand...
متن کاملDevelopment and Validation of a Computational Model for Intra- Cellular Circadian Oscillators
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including...
متن کاملCellular circadian oscillators in the suprachiasmatic nucleus remain coupled in the absence of connexin-36.
In mammals, the master circadian clock resides in the suprachiasmatic nucleus (SCN). The SCN is characterized by robust circadian oscillations of clock gene expression and neuronal firing. The synchronization of circadian oscillations among individual cells in the SCN is attributed to intercellular coupling. Previous studies have shown that gap junctions, specifically those composed of connexin...
متن کاملIntercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture.
Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 92 11 شماره
صفحات -
تاریخ انتشار 2007